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Significance

 After the success of protein 
structure prediction by 
AlphaFold2 (AF2), interests 
turned toward generating 
realistic conformational 
ensembles, and running AF2 with 
stochastic subsampling of the 
multiple sequence alignment 
(MSA) received substantial 
attention. It was shown that the 
method works only for some 
fraction of the proteins tested, 
and the origin of this limitation 
was not understood. We have 
shown that predicting multiple 
conformations requires 
comparably sized clusters of 
open and closed structures in  
the Protein Data Bank (PDB), 
whereas rarely seen 
conformations are usually not 
predicted. Our results emphasize 
the need for further method 
development and possibly for a 
combination of machine learning 
with physics-based search 
methods if the goal is generating 
entire conformational 
ensembles.
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The goal of this paper is predicting the conformational distributions of ligand binding 
sites using the AlphaFold2 (AF2) protein structure prediction program with stochastic 
subsampling of the multiple sequence alignment (MSA). We explored the opening of 
cryptic ligand binding sites in 16 proteins, where the closed and open conformations 
define the expected extreme points of the conformational variation. Due to the many 
structures of these proteins in the Protein Data Bank (PDB), we were able to study 
whether the distribution of X-ray structures affects the distribution of AF2 models. We 
have found that AF2 generates both a cluster of open and a cluster of closed models 
for proteins that have comparable numbers of open and closed structures in the PDB 
and not too many other conformations. This was observed even with default MSA 
parameters, thus without further subsampling. In contrast, with the exception of a 
single protein, AF2 did not yield multiple clusters of conformations for proteins that 
had imbalanced numbers of open and closed structures in the PDB, or had substantial 
numbers of other structures. Subsampling improved the results only for a single protein, 
but very shallow MSA led to incorrect structures. The ability of generating both open 
and closed conformations for six out of the 16 proteins agrees with the success rates of 
similar studies reported in the literature. However, we showed that this partial success 
is due to AF2 “remembering” the conformational distributions in the PDB and that 
the approach fails to predict rarely seen conformations.

protein structure prediction | binding hot spot | conformational change | machine learning |  
protein mapping

 The binding of small molecules to proteins plays important roles in various biological 
functions, including enzyme catalysis, receptor activation, and drug action, and hence 
understanding or designing such processes frequently involves the detection and charac-
terization of ligand binding sites ( 1     – 4 ). The release of the AlphaFold2 (AF2) and 
RoseTTafold programs has opened the possibility that such studies can be extended to 
previously uncharacterized proteins ( 5     – 8 ). AF2 uses a neural network architecture with 
attention-based components that take advantage of the evolutionary information extracted 
from multiple sequence alignments (MSAs), followed by a structural refinement module 
trained on X-ray crystal structures deposited to the PDB database. The AF2 predictions 
are primarily determined by the coevolutionary information contained in the MSA but 
are also influenced by the distribution of protein conformations in the PDB. For example, 
it was noted that when predicting the structures of the proteins that have both ligand-bound 
(holo) and ligand-free (apo) structures in the PDB, AF2 predicts the holo form in 70% 
of cases ( 9 ).

 The goal of this work is investigating the ability of AF2 to generate conformational 
ensembles of ligand-binding sites in proteins. As revealed by the variety of X-ray structures 
available for many proteins ( 10 ,  11 ) and by molecular dynamics simulations ( 12           – 18 ), 
regions surrounding binding sites may exhibit a high degree of motion, characterized by 
movements of structural elements on which the binding tends to rely. We selected a 
benchmark set of proteins with so-called cryptic sites that have both a closed conformation, 
essentially undetectable in some structures without a bound ligand, and an open confor-
mation, frequently but not necessarily with a bound ligand ( 10 ,  19 ,  20 ). In particular, 
the CryptoSite set includes 93 bound–unbound pairs in which each unbound structure 
had a site considered cryptic due to its low pocket score, and each bound structure had a 
biologically relevant ligand bound at the site ( 10 ). While the original set included only 
one unbound structure in each pair, it was shown that many of the proteins also have 
structures in the Protein Data Bank (PDB) with open binding sites without a bound 
ligand ( 19 ). The conformational changes have been studied in some of the proteins by 
molecular dynamics simulations ( 11 ,  15 ,  21 ,  22 ) and also by AF2 ( 23 ). Our analysis here D
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compares the geometry and druggability features of the experi-
mental X-ray structures available in the PDB and the ensembles 
of models generated with AF2. Specifically, we explore how closely 
the diversity of these features in the models conserves the confor-
mational variation seen in X-ray structures of the same protein.

 It is well understood that protein function is defined by the 
existence of conformational ensembles ( 24     – 27 ). Generating mul-
tiple conformations of proteins by AF2 has recently received sub-
stantial attention ( 28         – 33 ). Heo and Feig employed active and 
inactive G-protein coupled receptor (GPCR) structures as tem-
plates and were able to predict models that accurately captured 
the main structural changes ( 28 ). A more general idea was intro-
duced by Meiler and coworkers, who noticed that multiple con-
formations of GPCRs can be obtained by reducing the depth of 
the MSAs ( 34 ). Stochastic subsampling of the MSAs led to the 
generation of conformations that spanned the range between 
active and inactive structures. An alternative approach was used 
by Stein and Mchaourab, who manipulated the MSA via in silico 
mutagenesis ( 31 ). This idea was simplified by Kern and coworkers, 
who employed only naturally occurring mutations but suggested 
that clustering an MSA based on sequence similarity enables AF2 
to sample alternate states ( 33 ). However, a follow-up analysis 
revealed that the clustering method incorrectly predicted some of 
the structures ( 35 ).

 The above methods  of generating multiple protein conforma-
tions are based on the hypothesis that the MSA must encode for 
protein structural heterogeneity, and hence its manipulation by 
stochastic subsampling or by selecting different clusters of 
sequences will enable AF2 to sample alternate conformations. 
Results demonstrate that this approach works in a variety of appli-
cations, at least for some of the proteins ( 36 ). However, several 
papers also reported partially negative results. We already men-
tioned the failures of the sequence clustering approach ( 35 ). Meller 
et al. studied the opening of cryptic pockets in 10 proteins by AF2 
with subsampled MSA and found some predicted conformations 
with less than 1.2 A RMSD from the open (holo) structure in six 
of the 10 cases ( 23 ). However, the center of the clusters of pre-
dicted structures satisfied this distance condition only for two of 
the proteins, and hence, the authors used Markov state modeling 
to further open the pockets ( 23 ). Monteiro de Silva et al. reported 
generally successful predictions of relative populations of kinase 
conformations but noted that populations with small occupancy 
might be missed ( 37 ). Xie and Huang attempted capturing alter-
native conformational states of 16 membrane transporters but 
reported successful predictions of both inward-facing and 
outward-facing structures only for seven out of the 16 proteins 
using stochastic subsampling and only for three by sequence clus-
tering ( 38 ).

 In this paper, we focus on structures of cryptic binding sites, 
and hence we have natural extreme points to measure conforma-
tional diversity, i.e., the open versus the closed conformations of 
the pocket. While the opening of cryptic pockets by subsampled 
AF2 has been studied previously ( 23 ), we selected proteins with 
large numbers of conformations available in the PDB and generate 
large sets of models. This enables us to explore how well the con-
formational distributions of the AF2 models reproduce the dis-
tributions seen in the X-ray structures. The problem we study is 
further simplified by the fact that the conformational transition 
in each protein is primarily caused by the movement of a small 
segment, which may be a loop, a small secondary structure ele-
ment, or even a single side chain, and thus, the distance of a 
particular predicted structure between the open and closed 
extremes can be easily determined. In view of the studies discussed 
in the previous paragraph, we try to answer why AF2 with 

subsampled MSA works for some proteins and not for others. Is 
it possible that the diversity and populations of the X-ray struc-
tures available in the PDB influence the likely outcome in terms 
of model diversity? In other words, how much does AlphaFold 
remember, and how well can it generate alternate conformations 
rarely seen in the PDB?

 The second goal of our investigation is exploring the right 
level of subsampling required for generating multiple conforma-
tions. The key parameters for subsampling the MSA in the 
Colabfold implementation of AF2 are max_seq and max_extra_
seq. The first parameter, max_seq, defines the number of 
sequences randomly selected from the master MSA (the target 
sequence is always selected). The remaining sequences are then 
clustered around these selected sequences using a Hamming 
distance. From each cluster, the cluster center and max_extra_seq 
additional sequences are used by AF2 for inference. To generate 
potentially diverse but high-quality models we first use a very 
conservative approach and run AF2 with the default Colabfold 
parameters (max_seq = 512 and max_extra_seq = 5120). For 
each protein target, we perform 100 runs with random initial 
seeds, each run resulting in five different models. While this 
protocol is generally used for structure prediction by selecting 
the highest confidence models ( 39 ,  40 ), it yields substantial con-
formational diversity for 30% of the proteins in our benchmark 
set. However, in the remaining 70%, the default parameters 
produce a single cluster of binding site conformations, and we 
explored the use of smaller values for max_seq and max_extra_
seq. Previous works have shown that a significant reduction in 
these parameters may improve the diversity in the ensemble 
prediction ( 36 ), but we find that for the problem studied here, 
the predictions are fairly robust and substantially change only 
when the MSA becomes very shallow, affecting the overall quality 
of predictions. Thus, it is not clear whether there exists any 
general rule for selecting the best max_seq and max_extra_seq 
parameters. In view of the partial success, we try to identify the 
main factors that predict whether the subsampling approach will 
produce conformational diversity. 

Results

Benchmark Set of Proteins with Cryptic Binding Sites. The 16 
proteins in Table 1 have binding sites with both open and closed 
conformations in the PDB (41), each conformation represented 
by a reference PDB structure. We focus on the binding sites of the 
ligands indicated by their three-letter codes, cocrystallized with 
the protein structures shown by their bound PDB IDs. Table 1 
also shows the numbers of unbound and ligand-bound structures 
and identifies whether the bound structure is open or closed. 
We restricted consideration to proteins that have both open and 
closed reference structures without missing residues and have 15 
or more structures in the PDB. The difference between the two 
conformations is primarily due to a moving segment shown in 
Table 1 (SI Appendix, Supplementary Methods). Each sequence, 
identified with its AF PDB ID, was used for generating 500 models 
using the Colabfold version of the AF2 program with each of the 
following (max_seq, max_extra_seq) parameter pairs: (512, 5120), 
(156, 512), (64, 128), (32, 64), and (8, 16), where (512, 5120) is 
the default parameter pair. For each protein, we used the FTMove 
program (SI Appendix, Supplementary Methods) to select structures 
with at least 90% sequence identity to the structure labeled as 
the FTMove PDB ID. These additional structures form what we 
call the X-ray or PDB ensemble. The structures in this ensemble 
were then classified using PyMol as bound if they had a ligand 
overlapping with the ligand in the bound reference structure (42).D
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Models Generated by using AF2 with Default MSA Parameters. 
The most important data in Table 1 are the numbers of structures 
in the X-ray ensemble with the binding site in open or closed 
conformation, or in some “other” conformational state not 
overlapping with either of the two reference structures. As will 
be shown, these numbers largely determine whether AF2 can 
reproduce multiple conformations of the binding site, and this 
result is almost independent of the level of MSA subsampling 
until very small max_seq and max_extra_seq values are reached. 
We divide the 16 proteins in Table 1 into three groups based on 
their numbers of open and closed structures in the PDB. Group 
1 is formed by the six proteins (β-lactoglobulin, KRAS, MAPK, 
pyruvate dehydrogenase kinase, ribonuclease A, and β-secretase) 
that have comparable numbers of open and closed structures, and 
hence, we refer to these proteins as having balanced open and 
closed states. In addition, all proteins in this group have only few 
“other” conformations that are distant from both open and closed 
states of the binding sites. Group 2 is formed by the six proteins 
(TEM β-lactamase, cAMP-dependent protein kinase, glutamate 
receptor 2, AmpC β-lactamase, thrombin, and adipocyte lipid 
droplet binding protein) that have imbalanced numbers of open 
and closed states, since either the closed or the open structures 
dominate in the PDB. The proteins in this group also have 
relatively few structures in “other” conformations. Finally, Group 3 
consists of the remaining four proteins (myosin II, ricin, androgen 
receptor, and hsp90) that have both open and closed structures but 
also have comparable numbers of “other” conformations.

Proteins with Balanced Numbers of Open and Closed States. 
Fig. 1 shows distributions of binding site conformations and pocket 
volumes in the X-ray structures and the AF2 models of four Group 
1 proteins. For each X-ray structure in the PDB ensemble and for 
each model in the AF2 ensemble, we determine the RMSD of the 
moving segment from both the open and the closed reference X-
ray structures shown in Table 1. The moving segment is excluded 

during the alignment to the reference structures and the RMSD 
is calculated for only the moving residues. For proteins with 
moving loop segment, only alpha carbons are considered in the 
RMSD calculations, while for systems with side chains identified 
as moving segments, all-atom RMSD is calculated. In Figs. 1–3, 
the structures are represented in a 2D local coordinate system that 
shows the RMSD of the moving segment from the closed reference 
structure on the X axis and the RMSD of the moving segment from 
the open reference structure on the Y axis (Fig. 1, Top panels as 
examples). The figures also show the location of the cluster centers 
of the AF2 models. The cluster centers are color-coded according 
to their druggability scores (SI Appendix, Supplementary Methods 
for clustering the structures and calculating a druggability score).

 We briefly describe the X-ray and AF2 ensembles and pocket 
volumes for the four Group 1 proteins shown in  Fig. 1 . In 
β-lactoglobulin, access to the ligand binding site is modulated by 
the loop residues Ile84-Asn90 (SI Appendix, Fig. S1 ). The loop 
opens upon ligand binding or when the pH of the environment 
is raised from 6 to 8 ( 43 ). The PDB ensemble contains more open 
than closed conformations, and most of the open structures have 
a small molecule bound at the binding site and a druggable score 
( Fig. 1 A  , Top ). The AF2 ensemble has a similar distribution pat-
tern of conformations, with clusters of open and closed models 
( Fig. 1 A  , Second  row). The pocket volumes for bound and 
unbound structures in the PDB ensemble reflect the fact that with 
the open conformation, the pocket volume substantially increases 
( Fig. 1 A  , Third  row). The models in the AF2 ensemble have sim-
ilar pocket volumes, with the same bimodal distribution, but with 
several structures exhibiting volumes above the maximum volume 
threshold in the PDB ensemble, demonstrating AF2’s capability 
of substantially opening the binding site pocket in this protein 
( Fig. 1 A  , Bottom ).

 In KRAS, a hydrophobic pocket is located between the alpha-2 
helix of switch II (residues Gly60-Thr74) and the central beta-sheet. 
Binding of a small molecule within this pocket causes the alpha-2 

Table 1.   Proteins used in the study

Protein
AF PDB 

ID
FTMove 
PDB ID

Closed 
Ref.

PDB ID

Open 
Ref.

PDB ID
Bound 
PDB ID

Bound 
Struct.

Ligand 
ID

Moving 
segment

Closed 
structures 

in PDB

Open 
structures 

in PDB

Other 
structures 

in PDB

Unbound 
structures 

in PDB

Bound 
structures 

in PDB

 Bovine β 
-lactoglobulin

6GE7.A 1BSQ.A 1BSQ.A 1GX8.A 1GX8.A Open RTL Ile84 - Asn90 42 58 11 60 51

 KRAS 4EPW.A 4EPW.A 4EPR.A 4EPV.A 4EPV.A Open 0QX Met67, Tyr71 46 154 24 165 59

 MAPK 2NPQ.A 2ZB1.A 2ZB1.A 2NPQ.A 2NPQ.A Open BOG Met198 164 105 29 201 97

 Pyruvate 
dehydrogenase 
kinase

2BU8.A 2BU8.A 2BU8.A 2BU2.A 2BU2.A Open TF1 Phe31 21 13 6 34 6

 Ribonuclease A 1RHB.A 2W5K.B 1RHB.A 2W5K.B 2W5K.B Open NDP His119 189 49 51 242 47

﻿β-secretase 3IXJ.C 1W50.A 3IXJ.C 1W50.A 3IXJ.C Closed 586 Gly66 - Glu77 178 105 18 121 180

 TEM β-lactamase 1PZ0.A 1PZO.A 1JWP.A 1PZO.A 1PZO.A Open CBT Ala217-Leu225 159 2 20 179 2

  cAMP-dependent 
protein kinase 

2GFC.A 2GFC.A 2GFC.A 2JDS.A 2JDS.A Open L20 Thr51 - Arg56 19 238 43 51 249

 Glutamate 
receptor 2

1MY0.B 1MY0.B 1MY0.B 1N0T.D 1N0T.D Open AT1 Gly136-Ser142 237 60 3 32 268

 AMPc 
beta-lactamase

2BLS.B 2BLS.B 2BLS.B 3GQZ.A 3GQZ.A Open GF7 Asn289-Leu293 180 5 57 238 4

 Thrombin 1GHY.H 1HAG.E 1GHY.H 1HAG.E 1GHY.H Closed 121 AKA 26 1 5 10 22

 Adipocyte Lipid 
Droplet Binding 
Protein (ALDBP)

1ALB.A 1LIC.A 1ALB.A 1LIC.A 1LIC.A Open HDS Phe57 52 8 3 13 50

 Myosin II 2AKA.A 2AKA.A 2AKA.A 1YV3.A 1YV3.A Open BIT Leu262, Tyr634 1 9 34 35 9

 Ricin 1RTC.A 1RTC.A 1RTC.A 1BR6.A 1BR6.A Open PT1 Tyr80 61 24 28 76 37

 Androgen 
receptor

2AX9.A 2AX9.A 2AX9.A 2PIQ.A 2PIQ.A Open RB1 Lys720, Met734 33 46 31 102 8

 Hsp90 1YES.A 1YES.A 2QFO.B 2WI7.A 2WI7.A Open 2KL Asn106-Ile110 79 129 82 30 260
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helix to shift away from the beta-sheet. Concurrently, residue 
Tyr-71 disrupts a hydrogen bond and residue Met-67 rotates out-
ward, thereby creating space within the cavity for an inhibitor to 
bind. The moving segment is defined by these two residues. In the 
majority of the bound KRAS structures in the PDB ensemble, the 
two residues turn away from the beta sheet (SI Appendix, Fig. S2 ), 
resulting in a larger cluster of open structures ( Fig. 1 B  , Top ). The 
models in the AF2 ensemble have a similar pattern ( Fig. 1 B  , Second  
row), with more structures in open or partially open state. The 
volumes in PDB structures underscore the shallow nature of the 
pocket since both bound and unbound structures have similar 
pocket volumes, although some unbound structures are signifi-
cantly smaller ( Fig. 1 B  , Third row). The AF2 set produces similar 
pocket volumes, but low volumes are absent ( Fig. 1 B  , Bottom ).

 In p38 MAPK, a lipid-binding allosteric site is formed by a 
local conformational change with an alpha-helix moving further 
away from the protein core ( 44 ). When a ligand binds, the Met198 
residue rotates 180°, exposing its side chain, which is buried in 
the unbound state (SI Appendix, Fig. S3 ). Structures in the PDB 
have many open and closed conformations ( Fig. 1 C  , Top ). The 
AF2 models tend to cluster into two main groups: one closer to 
the open helix conformation and the other closer to the closed 
helix ( Fig. 1 C  , Second  row). The structures exhibit a tendency 

toward partially open states. Of these structures, three cluster 
centers displayed high druggability scores. The volume analysis 
shows that in the bound X-ray structures pocket volume increases 
and some unbound structures have a very small pocket ( Fig. 1 C  , 
﻿Third  row). The AF2 structures display a similar pattern but do 
not reach the same extremes as the PDB set ( Fig. 1 C  , Bottom ).

 Binding of ligands to pyruvate dehydrogenase kinase (PDHK) 
causes a hinge motion in helix α2, leading to a shift in the 
alpha-carbon position of Phe31 (SI Appendix, Fig. S4 ). This opens 
an induced pocket as the side chain of Phe31 changes from a lid 
position to an open conformation. Although there are relatively 
few structures of PDHK in the PDB, the RMSDs of the existing 
ones show that there is indeed a conformational shift in the position 
of Phe31 ( Fig. 1 D  , Top ). The AF2 ensemble has an approximately 
even split between a cluster of structures with Phe31 residue closing 
the site and one with more open structures ( Fig. 1 D  , Second  row). 
Due to low number of bound structures, it is challenging to deter-
mine whether the pocket volume increases with the residue shift. 
However, a few structures have high pocket volumes ( Fig. 1 D  , Third  
row). The pocket volumes of the AF2 models exhibit a narrower 
distribution ( Fig. 1 D  , Bottom ). Placing the remaining two proteins, 
ribonuclease A and β-secretase, in Group 1 is less certain. For rib-
onuclease A, SI Appendix, Fig. S5  shows that the side chain of 

Fig. 1.   Distributions of binding site conformations and pocket volumes in X-ray structures and AF2 models of Group 1 proteins with balanced distributions 
of open and closed states. (A) Bovine β lactoglobulin. (B) KRAS. (C) MAPK. (D) Pyruvate Dehydrogenase Kinase. Each column includes the same four subpanels. 
Top: RMSD of the moving fragment to open and closed reference structures in the X-ray structures of the PDB ensemble. Point shapes indicate the presence 
or absence of a ligand at the bindings site, and color indicates the druggability score. Second row: Same as the top panel for the predicted structures in the AF2 
ensemble. Larger scatter points indicate cluster centroid structures, with color indicating druggability scores. Third row: Binding pocket volumes in the X-ray 
structures of the PDB ensemble. Bottom: Binding pocket volumes in the predicted structures of the AF2 ensemble.
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His119 moves out of the pocket upon ligand binding. With 189 
open and only 49 closed X-ray structures, it is not clear whether 
these numbers are balanced enough for ribonuclease A to be in 
Group 1. In fact, AF2 yields only a single cluster of open structures 
(SI Appendix, Fig. S17 ). However, as will be discussed further in 
the paper, at reduced MSA depth AF2 yields both open and closed 
clusters (SI Appendix, Fig. S21D ), thus at that point, ribonuclease 
A behaves as the other Group 1 proteins. In β-secretase, the pocket 
opens due to the motion of the β-hairpin loop of residues Gly66–
Glu77 that form a mobile flap over the active site (SI Appendix, 
Fig. S6 ). This results in a fairly continuous distribution of X-ray 
structures between the open and closed reference states (SI Appendix, 
Fig. S18 ), in contrast to the other proteins in Group 1 that have 
fairly distinct clusters around the two states. Although based on 
our definition (SI Appendix, Supplementary Methods ), β-secretase 
belongs to Group 1, it has many intermediate structures that are 
neither open nor closed, and hence could be placed in Group 3. 
Accordingly, all AF2 generated models form a single diffuse cluster 
around the closed structure (SI Appendix, Fig. S18 ). The PDB and 
AF2 structures have similar volumes, with a narrower distribution 
for the latter.  

Proteins with Imbalanced Numbers of Open and Closed 
States. In contrast to the proteins in Group 1 with fairly similar 
numbers of open and closed structures in the PDB, the six 

proteins in Group 2 have dissimilar numbers of structures in 
open and closed states, in most cases with very limited number 
of structures available in one of the conformations. As shown in 
Fig. 2, for these proteins, the AF2 models resemble only one of 
the conformational states, usually the one with the higher number 
of X-ray structures in the PDB. We briefly describe the results for 
four Group 2 proteins shown in Fig. 2. Most PDB structures of 
TEM β-lactamase are very similar to the closed reference structure 
(SI Appendix, Fig. S7) and there are only two open structures (45), 
cocrystallized with small ligands that force two helices apart to 
form an allosteric site (Fig. 2 A, Top). AF2 is unable to open this 
cryptic site without the presence of ligands, producing a single 
cluster of closed models (Fig.  2  A, Second row). The Thr51–
Arg56 loop in cAMP-dependent protein kinase is flexible and 
has a variety of positions (SI Appendix, Fig. S8), but the open 
conformations dominate both in the PDB (Fig. 2 B, Top) and in 
the AF2 ensemble (Fig. 2 B, Second row). Glutamate receptor 2 
has some open structures in the PDB, but much higher number 
of closed ones (Fig. 2 C, Top), determined by the conformations of 
loop Gly136–Ser142 (SI Appendix, Fig. S9). AF2 places the loop 
between the two reference structures, and the models form a single 
cluster somewhat closer to the closed state (Fig. 2 C, Second row), 
with volumes that follow a narrow distribution (Fig. 2 C, Bottom). 
For AMPC β lactamase, the closed structures dominate both in 
the X-ray and AF2 ensembles (Fig. 2 D, Top and Second rows). 

Fig. 2.   Distributions of binding site conformations and pocket volumes in X-ray structures and AF2 models of Group 2 proteins with imbalanced distributions 
of open and closed states. (A) TEM β-lactamase. (B) cAMP-dependent protein kinase. (C) Glutamate receptor 2. (D) AMPc β -Lactamase. Each column includes 
the same four subpanels as in Fig. 1.
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The other proteins in Group 2 with results in SI Appendix are 
thrombin and adipocyte lipid droplet binding protein (ALDBP). 
For thrombin, the impact of the moving Gly216 - Tyr225 loop is 
shown in SI Appendix, Fig. S11. Most X-ray structures are closed, 
and AF2 yields a single closed cluster (SI Appendix, Fig. S19). 
For ALDBP, the moving segment is the side chain of Phe57 
(SI Appendix, Fig. S12), and the results disagree with the behavior 
of the other proteins in Group 2. In fact, while it has substantially 
more closed X-ray structures than open ones, AF2 generates a 
larger cluster of open states and a small cluster of closed ones 
(SI Appendix, Fig. S20).

Proteins with Many Structures in Neither Open and nor Closed 
States. The last four proteins in Table 1 have many structures in the 
PDB that are not close either to the closed or to the open reference 
states. AF2 is unable to generate both open and closed models, 
and in most cases, the majority of models mimic the binding 
site in the X-ray structures (Fig. 3). Myosin 2 has a single closed 
structure, nine open structures, and 28 structures that are equally 
distant from both reference structures (Fig. 3 A, Top). AF2 creates 
a single diffuse cluster that is closer to the closed state (Fig. 3 A, 
Second row). In the PDB ensemble the pocket volumes are broadly 
distributed (Fig. 3 A, Third row), and the distribution becomes 
more focused in the AF2 models (Fig. 3 A, Bottom). Ricin is a 
powerful cytotoxin widely used in the development of therapeutic 
agents (46). Ligand binding to the active site of Ricin requires the 

Tyr80 side chain to rotate by approximately 45° (SI Appendix, 
Fig. S14). The PDB structures of ricin form well-defined clusters 
near both the open and the closed reference structures and a 
third cluster of “other” structures far from both reference states 
(Fig. 3 B, Top). The AF2 models form an intermediate cluster 
located between closed and open states and a larger cluster close 
to the location of the “other” structures in the PDB ensemble 
(Fig.  3 B, Second row). The side chain conformation of Tyr80 
seen in the intermediate cluster of AF2 models is not present in 
the PDB set. AF2 shows an increase in pocket volumes when the 
Tyr side chain moves outward (Fig. 3 B, Bottom). Although the 
AF2 ensemble lacks a fully open conformation, pocket volumes 
are similar to those in the PDB set.

 The PDB structures of the androgen receptor have a cluster of 
conformations that are partially closed and a diffuse cluster that 
is about the same distance from both reference structures ( Fig. 3 C  , 
﻿Top ). AF2 reproduces only this diffuse cluster ( Fig. 3 C  , Second  
row). The AF2 models have narrower volume distribution than 
the PDB structures ( Fig. 3 C  , Bottom ). In the heat shock protein 
90 (hsp90), the 35 amino acid region of the geldanamycin binding 
domain can exist in open and closed conformations, altering the 
size of the binding pocket (SI Appendix, Fig. S16 ). In the PDB 
ensemble, the Asn106–Ile110 segment is observed to have three 
distinct conformations. The open conformations dominate 
( Fig. 3 D  , Top ), but there are also large clusters of closed and 
“other” structures. The AF2 models form only a cluster of such 

Fig. 3.   Distributions of binding site conformations and pocket volumes in X-ray structures and AF2 models of Group 3 proteins with many conformations distant 
from open and closed states. (A) Myosin II. (B) Ricin. (C) Androgen receptor. (D) Hsp90. Each column includes the same four subpanels as in Fig. 1.
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“other” structures ( Fig. 3 D  , Second  row). AF2 yields a much nar-
rower distribution of pocket volumes than in the PDB ensemble 
( Fig. 3 D  , Third and Fourth rows).  

Models Generated by Using AF2 with Subsampled MSA. As 
discussed above, we were able to generate models with multiple 
conformations of the ligand binding sites only for four Group 
1 proteins that have well-defined clusters of similar sizes near 
both the open and closed reference states, and not too many 
conformations anywhere else, plus for adipocyte lipid droplet 
binding protein (ALDBP). Since ALDBP has substantially fewer 
open than closed PDB structures, it is classified as a Group 2 
protein, but interestingly, AF2 generates clusters of both open 
and closed models. However, these results are based on using AF2 
with the default parameters used for predicting protein structures, 
whereas the literature describes successful generation of multiple 
conformations with some level of subsampling. Therefore, the 
logical next step of our study has been repeating model generation 
using increasingly subsampled MSAs by reducing the max_seq and 
max_extra_seq parameters. Based on the relevant reports, for each 
of the 16 proteins, we generated 500 models each in a series of 
four AF2 calculations using the following (max_seq, extra_seq) 
pairs: (156, 512), (64, 128), (32, 64) and (8, 16), in addition to 
the default values of (512, 5120). To our surprise, as described 
below, we have found the conformational distributions remarkably 
stable in spite of the major subsampling.

  Fig. 4  shows, from left to right, RMSDs of the moving segment 
to open and closed reference structures for one example from 
each of the three protein groups. Results for the remaining 13 
proteins are shown in SI Appendix . For bovine β lactoglobulin, 

representing Group 1 with balanced open and closed states, AF2 
with the default parameters produces clusters of both open and 
closed conformations with more models in the open state. 
Reducing max_seq leaves this result essentially unchanged. The 
distinction between open and closed clusters becomes less defined, 
and a number of models diverge from the open and closed clusters 
at max_seq = 8 ( Fig. 4A  ).  Fig. 4B   shows the distributions of AF2 
models with reduced MSA for TEM β-lactamase, representing 
Group 2 with very different numbers of open and closed X-ray 
structures. As discussed, TEM β-lactamase seems to open only 
in the presence of ligands, and with the default parameters AF2 
produces a single cluster of closed structures ( Fig. 2 A  , Second  
from Top ) and also with max_seq = 156 ( Fig. 4 B  , Left ). Reducing 
the max_seq and max_extra_seq parameters makes this single 
cluster more diffuse. At max_seq =  8, the cluster includes some 
partially open structures closer to the ligand-bound state (about 
2 Å RMSD instead of the 4.3 Å RMSD obtained with the default 
parameters), but this is due to some unfolding of the helices rather 
than their movement seen in the bound structures. From Group 
3, we show results for myosin II ( Fig. 4C  ). For Myosin II, AF2 
with the default MSA yields a diffuse cluster of largely closed 
structures ( Fig. 3 A  , Second  row). Reducing MSA results in fur-
ther widening of the cluster, and with max_seq =  8 yields many 
conformations equally far from the open and closed states, essen-
tially the misfolding of the protein ( Fig. 4 C  , Right ). In fact, the 
average global RMSD reaches 7.5 Å from the bound reference 
structure ( Fig. 5 C  , Middle ).                

  Fig. 5  is a summary of features of AF2 models obtained with 
the series of (max_seq, max_extra_seq) pairs. Results are shown 
for each of the three groups of proteins separately. The left panels 

Fig. 4.   RMSD of the moving fragment to open and closed reference structures with various levels of MSA reduction. (A) Bovine β lactoglobulin. (B) TEM β-
lactamase. (C) Myosin II. For each protein, the four panels show RMSD distributions of AF2 generated models with the (max_seq, max_extra_seq) pairs of (156, 
512), (64, 128), (32, 64) and (8, 16) from left to right.D
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show the normalized diversity distance as a function of the max_seq 
parameter. The concept of normalized diversity distance (NDD) 
was introduced to measure the maximum conformational diversity 
of models. To obtain NDD, we calculate the maximum RMSD of 
the moving segment between the most closed and most open struc-
tures in the AF2 ensemble and normalize this value with the max-
imum RMSD of the moving segment between the open and closed 
reference X-ray structures. For most Group 1 proteins, NDD 
exceeds 0.7, demonstrating that the models reproduce conforma-
tional diversity fairly well. The only exception is pyruvate dehy-
drogenase kinase, for which NDD increases with the decreasing 
max_seq, but then drops at max_seq = 8. At that point, the open 
and closed clusters of AF2 models merge (SI Appendix, Fig. S21 C , 
﻿Right  panel). At max_seq = 8, the same happens for KRAS and 
MAPK (SI Appendix, Fig. S21 A and B , Right  panels). In fact, at 
max_seq = 8 most Group 1 protein models cease to form two 
well-defined clusters, although the global RMSD of the structures 
does not exceed 2.5 Å ( Fig. 5 A  , Middle  panel). The only exception 
is Ribonuclease A. While ribonuclease A is an apparent exception 
in Group1 as it has a single AF2 cluster at default parameters, at 
max_seq = 8, AF2 actually yields clusters of open and closed con-
formations, demonstrating the behavior we had expected for all 
proteins (SI Appendix, Fig. S21 D , Right  panel).

 We recall that for proteins in Group 2, AF2 with max_seq = 
512 yields single clusters of conformations with the exception of 

ALDBP, which has two model clusters at all MSA depths 
(SI Appendix, Fig. S22E ). ALDBP also has a fairly large normalized 
diversity distance close to 0.8, and this property is conserved at 
reduced values of max_seq ( Fig. 5 B  , Left ). For the other proteins 
in Group 2, the normalized diversity distance, initially small, 
increases as we reduce max_seq. Additionally, for the other Group 
2 proteins AF2 with max_seq = 8 generates conformations that 
are equally distant from the open and closed reference structures 
(SI Appendix, Fig. S22 ). In fact, glutamate receptor 2 and AMPC 
β-lactamase tend to partially unfold in the shallow MSA runs 
(SI Appendix, Fig. S22 B and C ), resulting in large global RMSD 
from the bound reference structure ( Fig. 5 B  , Middle ). For the 
proteins in Group 3, reducing max_seq also yields single clusters 
(SI Appendix, Fig. S23 ) and increases the NDD values ( Fig. 5 ). 
However, this is in most cases misleading, since the generated 
structures, while diverse with large NDD values, may be equally 
distant from the open and closed states as shown in SI Appendix, 
Fig. S27 . No open and closed clusters are produced with reduced 
MSA for any of the Group 3 proteins (SI Appendix, Fig. S23 ). 
Reducing the MSAs generally results in higher proportion of incor-
rectly folded proteins. The average pLDDT is a good predictor of 
the average global RMSD (SI Appendix, Figs. S24–S26 ). The 
plDDT values of the moving segments have substantial variation 
(SI Appendix, Table S2 ), with little impact on the overall RMSD 
of the models.   

Fig. 5.   Properties of AF2 models obtained using reduced MSAs for the three groups of proteins considered in this study. (A) Group 1 proteins with balanced 
numbers of open and closed states. (B) Group 2 proteins with imbalanced numbers of open and closed states. (C) Group 3 proteins with many structures in 
neither open and nor closed states. Left panels show the normalized diversity distances as a functions of the max_seq parameter. Middle panels show the average 
global RMSD values to the ligand-bound reference state, also as functions of max_seq. Right panels show average plDDT values as functions of the global RMSD.D
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Discussion

 It has been reported in recent papers that running AF2 with sub-
sampled MSA can produce multiple conformations, but only for 
some of the proteins studied ( 23 ,  35 ,  37 ,  38 ). Thus, it is an open 
question what properties of a protein predict success. We set out to 
explore the opening of cryptic ligand binding sites in 16 proteins, 
where the closed and open conformations define the expected 
extreme points of the conformational variation. Due to the many 
structures in the PDB, we were able to study whether the distribution 
of X-ray structures between closed and open states affect the distri-
bution of AF2 models. We have found AF2 generates multiple clus-
ters of models for proteins that have comparable numbers of closed 
and open structures in the PDB and not too many other conforma-
tions. Surprisingly, this property was observed both without and with 
subsampling of the MSA. The multiple conformations in the models 
cease to exist at very shallow MSA as the proteins start to misfold. 
The exceptions to this rule are ribonuclease A, which has a single 
AF2 generated cluster at default MSA (SI Appendix, Fig. S17 ), but 
clusters of open and closed structures at (max_seq, max_extra_seq) 
= (8, 16) (SI Appendix, Fig. S21D ); thus, it behaves the way we had 
expected all proteins to in this study. As we mentioned, β-secretase 
has a continuum of conformations in the X-ray ensemble between 
open and closed states rather than two distinct clusters as the other 
Group 1 proteins, which may be the reason why its models form a 
single cluster at all parameters (SI Appendix, Fig. S21E )

 In contrast to the Group 1 proteins shown in  Fig. 1 , AF2 gen-
erally does not yield multiple clusters of conformations for the 
proteins that have imbalanced numbers of open and closed struc-
tures in the PDB ( Fig. 2 ) or have substantial numbers of structures 
distant from these states ( Fig. 3 ). Thus, we conclude that AF2 
seems to have a strong “memory” and fails to generate rarely seen 
conformations ( 37 ). Among the 16 proteins studied, we have 
found only one, adipocyte lipid droplet binding protein (ALDBP) 
that does not fully comply with this observation. In fact, ALDBP 
has many closed X-ray structures and only a few open ones, and 
yet, AF2 generates a larger cluster of open and a smaller cluster of 
closed models (SI Appendix, Fig. S20 ).

 Following the substantial body of published work, we assumed 
that the right level of subsampling promotes generating multiple 
conformations. However, we obtained multiple conformations 
only for the proteins that also have multiple conformations in the 
PDB, and that this property was independent of the level of sub-
sampling, except for using a very shallow MSA that may misfold 
the protein. In contrast, subsampling did not help for proteins 
that did not have models in multiple conformations using the 
default MSA. The only exception among the 16 proteins was the 
already-mentioned ribonuclease A. Since AF2 with subsampled 
MSA provided multiple conformations for six of the 16 proteins 
(i.e., five proteins in Group 1 and ALDBP), our success rate seems 
to agree with the rates reported in some earlier publications  
( 23 ,  30 ,  34 ,  35 ,  37 ,  38 ). The difference to these previous papers 
is our ability to show that the success or failure for a particular 
protein is heavily dependent on the conformational distributions 

of the X-ray structures in the PDB, suggesting that AF2 has a 
nonnegligible level of memory, limiting the ability of the program 
to model rarely occurring conformations. A number of recent 
publications support this conclusion. Skolnick et al. have shown 
that AF2 predictions are determined by the TM-score, a structural 
similarity metric, of the closest structure in the training library to 
that of the target protein’s structure ( 47 ). The Grigoryan group 
analyzed antibody modeling success with AF2 and found that it 
works mostly for cases where TERtiary Motifs (TERMs) from 
natural other proteins can be used to represent the CDR3 loops 
( 48 ). Thus, in view of the limitation of learning due to incomplete 
training sets, it is possible that for generating conformational 
ensembles of proteins, it may be necessary to combine the machine 
learning approach with physics-based methods that are independ-
ent of the distributions of existing protein structures. It is impor-
tant to note that our paper examines the relationships between 
the statistics of protein structures in the PDB used as the training 
set and the ability of AF2 of generating multiple conformations. 
The number of conformations of a protein in the PDB may 
depend on the interests in cocrystallizing the protein with many 
ligands, but also on existing physical constraints. For example, 
only a few ligands are known to open the cryptic allosteric site of 
TEM β-lactamase, and opening of the pocket could not be accom-
plished by molecular dynamics simulations without the presence 
of such ligands ( 11 ,  23 ). Investigating the relationships among 
physical reality, training set statistics, and machine learning memory 
is an important general problem for further studies,  

Methods

Model Generation. The selected protein sequences were used as input for the 
ColabFold version of AF2 (35, 49). We have run AF2 using 100 random seeds, 
generating five models per seed and thus resulting in a total of 500 structural 
models for each (max_seq, extra_seq) parameter pairs.

Calculation of Pocket Volumes. We used the dpocket option of the Fpocket 
program to determine the volume of ligand binding pockets formed around the 
identified ligand (50).

Data, Materials, and Software Availability. Code for our RMSD and cluster-
ing analyses, FTMove calculations, details about bound proteins, MSAs utilized 
for Colabfold generations, and the Global RMSD/pLDDT data for each struc-
ture; Fpocket algorithm; FTMove server data have been deposited in github; 
FTmove (https://github.com/marialzs/AF_multiconformation; https://github.
com/Discngine/fpocket; https://ftmove.bu.edu) (51). All study data are included 
in the article and/or SI Appendix.
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