Structural Biology

Ruchika Bajaj, PhD Membrane Protein Biologist

Why do we eat proteins ??

Digestive enzymes help facilitate chemical reactions

Antibodies support immune function

Support muscle contraction and movement

Support the regulation and expression of **DNA** and **RNA**

Provide support to the body

Hormones help coordinate bodily function

Move essential molecules around the body

Functions of protein

Central Dogma: Proteins : the building block of life

Amino acids : building blocks of proteins

The peptide bond connects amino acids to build peptides

Levels of protein structure

The Folding Problem

A variety of protein structures

Structural Biology is a mature science

Structural biology is the study of the molecular structure and dynamics of biological macromolecules, particularly proteins and nucleic acids, and how alterations in their structures affect their function. Structural biology incorporates the principles of molecular biology, biochemistry and biophysics.

Some of the key developments in crystallography (shown in black), electron microscopy (EM; shown in green), nuclear magnetic resonance (NMR; shown in red) and computational methods (shown in blue) are highlighted. MD, molecular dynamics; NaCl, sodium chloride; PDB, Protein Data Bank.

First structures in Structural Biology

1962 of Max Perutz with his balsa-wood model of haemoglobin, and John Kendrew with his wire model of myoglobin. Models were derived from X-ray data. The resolution of the myoglobin data (1.4 Å). the haemoglobin data were derived at a lower resolution (6.0 Å).

Nature Reviews | Molecular Cell Biology

Key Techniques in Structural Biology

Nuclear Magnetic Resonance

X-Ray Crystallography

Cryo-electron microscopy

Protein Data Bank: The protein repository

Protein Data Bank: https://www.rcsb.org/

RCSB PDB	Deposit - Search - Visualize -	Analyze - Download -	Learn - About -	Documentation -	Careers COVID-19	MyPDB - Conta	act us	
PROTEIN DA	TABANK 215,908 Structures 1,068,577 Compute Models (CSM)	from the PDB	D Structures 😧 Ente	er search term(s), Entry	ID(s), or sequence	Include CSM 😧 🔵	Q	
្ទំ PDB-101		NAKB S wwPDB	³ OB-Dev					
		ccess Computed Struc	cture Models (CSM	ls) of all available m	nodel organisms	n more		
PDB-101 Welcom Poposit Search Yisualize Nalyze Downlo Learn	Compute Compute Bank (PD) Compute ModelArc These data cat providing a str	Ceess Computed Structure Access Computed Structure Data Bank (RCSB PDB) of ducation by providing action and analysis of: Intally-determined 3D structure B archive In be explored in context uctural view of biology.	PDB-Dev cture Models (CSM enables breakthroug cess and tools for en- uctures from the Pro- SM) from AlphaFold of external annotation COCONTINUES (CSM)	s) of all available markers in exploration, otein Data DB and ions PDB-101 Training Resources	Inodel organisms February Molecul February Molecul Image: Search Parameter Fetinements Search Parameter Text Search for: If Refinements ORGANISM Homo sapiens (254) Scapharca inaequiva Amphitrite ornata (26) Equus caballus (18) Lupinus luteus (17) Cerebratulus lacteus Physeter catodon (16) Other (280) UNIPROT MOLECUL Hemoglobin subunit Hemoglobin subunit Hemoglobin subunit Hemoglobin full Myoglobin (17) Refine Query TAXONOMY Eukaryota (626) Bacteria (79) Other (1)	Ile of the Month	274 Citations 1 274 Citations 1 274 Citations 1 274 Citations 1 274 Citations 1 274 Citations 1 274 Citations 1 28 Cut 28 Cut	
					EXPERIMENTAL M X-ray (676)	EIHOD	©3D View	

The impact of mutation on structure-function of protein

Structural biology of the SARS-CoV-2 proteome and genome

Conformational changes on ligand binding

Apo MRP1

Substrate-bound MRP1

Structure-functional relationships - catalytic cycle of protein

Recent Nobel prizes in Structural Biology

Emmanuelle Jennifer A Charpentier Doudna "for the development of a method for genome editing" THE ROYAL SWEDISH ACADEMY OF SCIENCES

THE NOBEL PRIZE IN CHEMISTRY 2024

Da∨id Baker Demis Hassabis John M. Jumper

"for computational protein design"

THE ROYAL SWEDISH ACADEMY OF SCIENCES

THE ROYAL SWEDISH ACADEMY OF SCIENCES

protein design"

"for computational

"for protein structure prediction"

"for protein structure prediction"

Questions