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[bookmark: Slide 2: How to read a paper? ]How to read a paper?
· Not about memorizing/learning ALL the different mutations, etc.
· Read the abstract, read the figures -> what is the paper trying to present
· Then do a deep dive -> The introduction should explain the previous work and why this is important for the field – if it is very novel you can check additional short reviews
· Pick a couple of sections that sound most interesting and do a deep dive into those.
· Think about why they performed these experiments, have they explained everything?
· What is the key message

[bookmark: Slide 3: How to understand and convey in]How to understand and convey information?
From the perspective of a journal club:
· What is the key message?
· What are the main findings? (you don’t have to show all the figures
and all the supplementary figures)
· What is innovative about it?
· Is there anything that remains unanswered?
· What is the impact of this publication on a larger scale (let’s say
cancer field).

[bookmark: Slide 4: Why do we perform research? ]Why do we perform research?
· To understand ->
· basic biology (how things work),
· to discover underlying mechanisms,
· to be able to advance science,
· cure diseases

[bookmark: Slide 5: What is a disease? ]What is a disease?
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[bookmark: Slide 6: What is a molecular mechanism? ]What is a molecular mechanism?
A molecular mechanism describes the detailed, step-by-step sequence of events that occurs at the molecular level to carry out a biological process.
· Molecular mechanisms are the processes that explain how genetic variations lead to observable disease phenotypes. They also refer to the underlying processes that contribute to cell and organismal physiology
· The molecular processes that underlie the pathogenesis of diseases
· Alterations in mRNA translation or protein stability that affect a phenotype
· Sickle Cell Anemia: Normal: Gene makes correct hemoglobin → round red blood cells → good oxygen delivery Mechanism disrupted: One letter change in gene → abnormal hemoglobin → sickle-shaped cells → poor oxygen delivery
· Insulin and Diabetes: Healthy mechanism: Insulin gene → proper insulin → glucose enters cells Type 1 Diabetes mechanism: Immune system attacks insulin-producing cells → no insulin → high blood sugar
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[bookmark: Slide 8: Transcription -> DNA into RNA]Transcription -> DNA into RNA
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[bookmark: Slide 9: Translation –> mRNA into protei][image: A computer generated image of a dna structure  Description automatically generated with medium confidence]Translation –> mRNA into protein
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Clague MJ, Urbe S, Cell Minireview, 2010

[bookmark: Slide 11: DNA damage]DNA damage
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[bookmark: Slide 12]p53 (gene TP53)
· ”guardian of the genome”
· Activated by DNA damage
· Transcription factor
· Induces cell cycle arrest, allowing damage repair or inducing apoptosis

[image: figure 2]

Marques JF, Kops GJPL, Chromosome Res, 2023

[bookmark: Slide 13]DNA damage – cancer treatments
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· Many cancers = TP53 mutated
· Yet DNA-damaging chemotherapies still induce apoptosis
→ There must be alternative pathways

[image: figure 1]
[bookmark: Slide 14]Harris SL, Levine AJ, Oncogene, 2005

[bookmark: Slide 15][image: p53: DNA Damage Response and Cancer]p53 – dependent apoptosis
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[bookmark: Slide 16]p53 – independent apoptosis
[image: Schematic diagram representing mechanism of p53-dependent and p53-independent death of wild-type (p53 +/+ ) and mutant p53-expressing (p53 mt ) colon cancer cells as a result of crocetin treatment.  ]
Ray P, Scientific Reports, 2016
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Apoptosis

in Cancer Cells
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Stage 1

Non-apoptotic cancer cell

Stage 2

Cell shrinkage and chromatin condensation

Stage 3

Nuclear fragmentation and membrane blebbing

Stage 4

Apoptotic body formation
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[bookmark: Slide 20]Ribosome stalling

· Ribosome pauses at a codon it cannot decode
· Causes ribotoxic stress
· Can activate
downstream signaling pathways


[image: Figure 1]

Yip MCJ, Shao S, Trends in Biochemical Sciences, 2021
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Yip MCJ, Shao S, Trends in Biochemical Sciences, 2021

[bookmark: Slide 22][image: ]Codon usage


· Common codons
= abundant tRNA
· Rare codons (e.g.,
UUA) = low tRNA
· Missing tRNA →
ribosome stalls
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[bookmark: Slide 24]Methods to measure translation
· Puromycin incorporation:
Puromycin is an antibiotic that prevents protein synthesis by binding to the C-terminus of nascent peptide chains. This causes premature chain termination, releasing the polypeptide chain

[image: ][image: ]
· Low puromycin = low translation
Aviner R, Computational and Structural Biotechnology Journal, 2020

[bookmark: Slide 25]Methods to measure translation efficiency

RNA-seq -> total RNA from the cells -> transcriptional changes
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[bookmark: Slide 26]Methods to measure translation efficiency

Polysome profiling -> translational efficiency changes -> high polysomal fractions over free mRNA / low translated
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[bookmark: Slide 27]Methods to measure translation efficiency

Polysome profiling -> translational efficiency changes -> high polysomal fractions over free mRNA / low translated
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[bookmark: Slide 28]Methods to measure translation efficiency

Ribosomal profiling (ribo-seq) -> translational efficiency changes and positional information about the ribosome
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[bookmark: Slide 29]Methods to measure translation efficiency

Ribosomal profiling (ribo-seq) -> translational efficiency changes and positional information about the ribosome
[image: ][image: ]

[bookmark: Slide 30]Methods to measure translation efficiency

Ribosomal profiling (ribo-seq) -> translational efficiency changes and positional information about the ribosome




[image: ][image: ][image: ]





Combined with RNA-seq to adjust translational changes for transcriptional changes
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[image: How to design sgRNA sequences]



[image: CRISPR gene editing - Wikipedia]The protospacer adjacent motif (or PAM for short) is a short DNA sequence (usually 2-6 base pairs in length) that follows the DNA region targeted for cleavage by the CRISPR system, such as CRISPR-Cas9. The PAM is required for a Cas nuclease to cut and is generally found 3-4 nucleotides downstream from the cut site.
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[image: Review of CRISPR/Cas9 sgRNA Design Tools | SpringerLink]


Cui Y, et al., Interdisciplinary Sciences: Computational Life Sciences, 2018
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Ding, W, et al., Applications of Nanoscience in Photomedicine, 2015



[bookmark: Slide 36: Thank you for your attention. ]Thank you for your attention.
Any questions?



Please feel free to contact me @ adrianna.dabrowska@ucsf.edu
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